Short Communication

Lifetime measurements on excited SH $(A^2\Sigma^+)$ radicals

K. H. BECKER and D. HAAKS Institut für Physikalische Chemie der Universität Bonn, Bonn (Germany) (Received July 12, 1972)

The H₂O and, very recently, the H₂S molecules have become of considerable interest for the chemistry of the interstellar medium. Both molecules have been detected by radio astronomy in interstellar clouds^{1,2}.

The H₂S photochemistry, contrary to that of H₂O, has not been studied very well. It is known that the vacuum-u.v. photolysis of H₂S, in a manner similar to H₂O photolysis, partly leads to the formation of electronically excited SH(A² Σ ⁺) radicals (Dyne and Style³). The dynamics and the quantum yield of the H₂S decomposition is different from that of H₂O, as was found recently (Haaks⁴, and Becker and Haaks⁵).

The photodissociation of H₂S into excited SH(A² Σ^+) radicals and H atoms by irradiation with rare gas resonance lines at 1470 or 1236 Å can be used to measure the natural and collisional lifetime of SH(A² Σ^+). Such measurements were carried out by using mechanically modulated light pulses of a xenon or krypton resonance lamp for the pulse-photolysis of H₂S. The fluorescence decay after the excitation pulse was recorded by a cooled photomultiplier through an interference filter ($\lambda_0 = 3280$ Å, $\Delta\lambda = 100$ Å) with photon-counting techniques (Becker *et al.*⁶). The multiplier pulses were stored in a signal analyzer over a large number of scans:

The fluorescence decay measurements were made under flow as well as under static conditions. Figure 1 shows the inverse decay times of the exponentially decaying fluorescence as a function of the H_2S and D_2S pressure, respectively.

The fluorescence intensity follows the following reactions:

Excitation process: $H_2S + h\nu_{1236} A \rightarrow SH(A^2\Sigma^+, v = o) + H$ Fluorescence decay: $SH(A^2\Sigma^+, v = o) \rightarrow SH(X^2\Pi, v = o) + h\nu_{3240} A; k_s$ $SH(A^2\Sigma^+, v = o) + M \rightarrow SH(X^2\Pi, v = o) + M; k_M$ or products J. Photochem., 1 (1972/73)

Fig. 1. The inverse of the fluorescence lifetime as function of the H_2S and D_2S pressure, respectively.

TABLE 1

NATURAL LIFETIMES AND OSCILLATOR STRENGTHS

$SH(A^{2}\Sigma^{+}, v = 0)$ $SD(A^{2}\Sigma^{+}, v = 0)$	$ au_{ m s}$: (0.55 \pm 0.14) $ imes$ 10 ⁻⁶ s $ au_{ m s}$: (0.37 \pm 0.07) $ imes$ 10 ⁻⁶ s	
$SH(A^{2}\Sigma^{+}, v = o \iff X^{2}\Pi, v = o)$ $SD(A^{2}\Sigma^{+}, v = o \iff X^{2}\Pi, v = o)$	f_{00} : (1.45 \pm 0.4) $ imes$ 10 ⁻³ f_{00} : (2.2 \pm 0.4) $ imes$ 10 ⁻⁸	

Accordingly, the inverse lifetime of the emitting state is given by $1/\tau = k_s + k_M(M)$. From the extrapolation to the pressure (M) = 0 in Fig. 1 the natural lifetime $\tau_s = 1/k_s$ was derived. The natural lifetimes τ_s and the corresponding oscillator strengths f_{00} are given in Table 1.

In Table 2 the rate constants $k_{\rm M}$ as well as the cross sections of electronic quenching of the excited SH and SD radicals by different gases M are listed.

TABLE 2

М	$SH(A^{2}\Sigma^{+}, \upsilon = o)$		$SD(A^{2}\Sigma^{+}, v = o)$	
	\overline{k} (cm ³ molecule ⁻¹ s ⁻¹)	(Å) ²	$\overline{k \text{ (cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})}$	(Å) ²
H ₂ S	$(12.1 \pm 3) \cdot 10^{-10}$	196 ± 60		
D_2S	<u> </u>		$(11.4 \pm 1.8) \cdot 10^{-10}$	187 ± 30
H2*	$2.2 \cdot 10^{-12}$	0.12		<u> </u>
N_2^*	$4.5 \cdot 10^{-12}$	0.13		
He*	1.0 · 10 ⁻¹²	0.075		
Ar*	6.0 · 10 ⁻¹²	0.10	_	
Ne*	8.0 · 10 ⁻¹²	0.11	-	

QUENCHING CROSS SECTIONS, T = 298 K

* From Stern-Volmer plots with $\tau_s = 5.5 \times 10^{-7}$ s.

J. Photochem., 1 (1972/73)

The natural lifetime τ_s and the f_{00} value may exhibit a slight dependence on the rotational energy as for OH(A² Σ^+), (Haaks⁴ and Becker and Haaks⁵) which is under further investigation.

The financial support of this work by the "Deutsche Forschungsgemeinschaft" is gratefully acknowledged.

- 1 A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton and W. J. Welch, *Nature*, 221 (1969) 626.
- 2 P. Thaddeus, M. L. Kutner, A. A. Penzias, R. W. Wilson and K. B. Jefferts, Astrophys. J. Lett., to be published.
- 3 P. J. Dyne and D. W. G. Style, Nature, 167 (1951) 899.
- 4 D. Haaks, Thesis, University Bonn, 1972.
- 5 K. H. Becker and D. Haaks, 1972, to be published.
- 6 K. H. Becker, B. Fassbender, D. Haaks and D. Kley, Messtechnik, 78 (1970) 100.